Improvement of Laser Beam Fusion Cutting of Mild and Stainless Steel Due to Longitudinal, Linear Beam Oscillation

Author:

Goppold CindyORCID,Pinder Thomas,Schulze Susanne,Herwig Patrick,Lasagni Andrés Fabián

Abstract

The latest research on laser beam fusion cutting (LBFC) with static beam shaping have shown a limitation in the quality of cut parts for thick steel plates (> 6 mm) when using solid state lasers. The approach of dynamic beam oscillation has recently shown to be capable of overcoming this challenge, allowing to increase the cutting speed as well as improving cut edge quality beyond the state of the art. The present paper investigates the influence of longitudinal, linear beam oscillation in LBFC of 12 mm mild and stainless steel plates by analyzing different parameters as cutting speed, burr, surface roughness, heat affected zone (HAZ), and recast layer. Reasons for the observed process improvements compared to static beam shaping have been discussed. The adjustment of the energy deposition and interaction time of the laser beam with the material found to be most relevant for optimizing the LBFC process. In particular, for beam oscillation, a gradual energy deposition takes place and increases the interaction time. This reduces the heat input in terms of HAZ and recast layer by more than 50%, resulting in high cut edge quality and more than 70% faster cutting speed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3