Computational Method to Optimize Design of Gripping Part of Products via Grasping Motion Simulation to Maximize Gripping Comfort

Author:

Hokari Kazuki,Pramudita Jonas A.ORCID,Ito Masato,Okada Kazuya,Tanabe Yuji

Abstract

In this study, a grasping motion simulation method based on finite element analysis was developed for the virtual evaluation of gripping comfort while gripping a cylindrical object. The validity of the grasping motion simulation was verified by comparing the contact pressure distribution generated on the palm of a hand using a finite element model with the measured result obtained via experiments on a human subject. The mean absolute difference between the simulation and experimental results at 23 regions was 7.4 kPa, which was considered to be significantly low and an acceptable value for use in assessment of the gripping comfort score. Furthermore, topology optimization was introduced into the simulation to propose an easy method for obtaining a rough shape of the gripping part of a product that is comfortable to grip. An objective function during the optimization process was defined to minimize the contact pressure concentration level, and this was observed to have a negative correlation with the gripping comfort. The optimization result indicated low element density at the parts in contact with the tips of the index and middle fingers as well as high element density at the parts in contact with the proximal part of the palm. The method allows a designer to evaluate the gripping comfort of a product during the design process and aids in developing a shape that can provide better gripping comfort. Additionally, the method can also be used to reevaluate the gripping comfort of existing products.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3