Developing a Universal Mirror–mirror Laser Mapping System for Single Event Effect Research

Author:

Gu Cheng,Belev George,Tian Haonan,Shi Shuting,Nofal Issam,Wen Shijie,Chen Li

Abstract

Research on single event effects (SEEs) is significant to the design and manufacture of modern electronic devices. By applying two photon absorption (TPA) ultra-fast pulsed lasers, extra electron-hole pairs (EHPs) are generated in a desired location on a chip, simulating the process that could occur in the circuit by energetic particles. In this study, a SEE sensitivity mapping system is described which uses this method to generate real-time sensitivity maps for various electronic devices. The system hardware includes an attenuator to control the energy, a Pockels cell as a fast-optical switcher and a mirror–mirror module to project the laser beam into a certain location. The system software developed for this application controls the laser system, automatically generates sensitivity maps, communicates with the testing devices and logs the SEE results. The two main features of this laser mapping system are: high scanning velocity for large area scanning (about 1 × 1 mm) and high spatial resolution for small area scanning (about 1 × 1 μm). To verify this mapping system, sensitivity maps were generated for static random access memory (SRAM) built with 65 nm technology and for commercial operational amplifiers (op-amps). The achieved sensitivity maps were compared with circuitry analysis and laser testing results, confirming this mapping system to be effective.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3