Magnetic Resonance-Electrical Properties Tomography by Directly Solving Maxwell’s Curl Equations

Author:

Chi JieruORCID,Guo LeiORCID,Destruel AurelienORCID,Wang Yaohui,Liu Chunyi,Li Mingyan,Weber Ewald,Liu Qinghuo,Yang Jie,Xin Xuegang,Liu FengORCID

Abstract

Magnetic Resonance-Electrical Properties Tomography (MR-EPT) is a method to reconstruct the electrical properties (EPs) of bio-tissues from the measured radiofrequency (RF) field in Magnetic Resonance Imaging (MRI). Current MR-EPT approaches reconstruct the EP profile by solving a second-order partial differential wave equation problem, which is sensitive to noise and can induce large reconstruction artefacts near tissue boundaries and areas with inaccurate field measurements. In this paper, a novel MR-EPT approach is proposed, which is based on a direct solution to Maxwell’s curl equations. The distribution of EPs is calculated by iteratively fitting the RF field calculated by the finite-difference-time-domain (FDTD) technique to the measured values. To solve the time-consuming problem of the iterative fitting, a graphics processing unit (GPU) is used to accelerate the FDTD technique to process the field calculation kernel. The new EPT method was evaluated by investigating a numerical head phantom, and it was found that EP values can be accurately calculated and were relatively insensitive to simulated RF field errors. The feasibility of the proposed method was further validated using phantom-based experimental data collected from a 9.4 Tesla (T) Magnetic Resonance Imaging (MRI) system. The results also indicated that more accurate EP values could be reconstructed from the new method compared with conventional methods. Moreover, even in the absence of phase information of the RF field, the proposed approach is still capable of offering robust EPT solutions, thus having improved practicality for potential clinical applications.

Funder

Natural Science Foundation of Shandong Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3