Effect of Modified Flow Schemes of Heat Transfer Fluid on the Performance of a Solar Absorption–Cooling System for an Educational Building in Pakistan

Author:

Butt Iftikhar BashirORCID,Tan Jinwang,Waqas AdeelORCID,Ali Majid,Javed Adeel,Ali Asfand YarORCID

Abstract

Performance of solar absorption cooling systems (SACS) is the focus of contemporary studies for decreasing the electrical energy consumption of buildings as the conventional cooling system of buildings is the main consumer of electrical energy during the summer season in hot–humid climates. In this study, the performance analysis of SACS by manipulating different flow schemes to the heat transfer fluid between different components of the system was performed. TRNSYS model of SACS in an education building located at the city of Peshawar (34.00 N, 71.54 E), Pakistan to encounter the peak cooling load of 108 kW (during operating hours of the building i.e., 09 a.m. to 05 p.m.) is developed and all possible flow schemes of heat transfer fluid between the system’s components were compared. In Scheme-1 (S-1), a conventional flow pattern is used in which the hot water exiting from the chiller unit flows directly toward the stratified thermal storage unit. In Scheme-2 (S-2), the modified flow pattern of hot water exiting from the chiller unit will divert towards the auxiliary unit, if its temperature exceeds the temperature at the hot side outlet of the tank. Another modified flow pattern is Scheme-3 (S-3) in which the hot water leaving the chiller to keep diverting towards the auxiliary unit unless the outlet temperature from the hotter side of the tank would reach the minimum driving temperature (109 °C) of the chiller’s operation. Simulations in TRNSYS evaluates the SACS’s performance of all the schemes (conventional and modified) for the whole summer season and for each month. In general, S-3 with evacuated tube solar collector results in better primary energy saving with the smallest collector area per kilowatt for achieving 50% primary energy saving for the whole summer season.

Funder

Shenzhen University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3