Abstract
Intracranial Hemorrhage (ICH) has high rates of mortality, and risk factors associated with it are sometimes nearly impossible to avoid. Previous techniques to detect ICH using machine learning have shown some promise. However, due to a limited number of labeled medical images available, which often causes poor model accuracy in terms of the Dice coefficient, there is much to be improved. In this paper, we propose a modified u-net and curriculum learning strategy using a multi-task semi-supervised attention-based model, initially introduced by Chen et al., to segment ICH sub-groups from CT images. Using a modified inverse-sigmoid-based curriculum learning training strategy, we were able to stabilize Chen’s algorithm experimentally. This semi-supervised model produced higher Dice coefficient values in comparison to a supervised counterpart, regardless of the amount of labeled data used to train the model. Specifically, when training with 80% of the ground truth data, our semi-supervised model produced a Dice coefficient of 0.67, which was higher than 0.61, obtained by a comparable supervised model. This result also surpassed by a greater margin the one obtained by using the out-of-the-box u-net by Hssayeni et al.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference47 articles.
1. Intracranial Hemorrhage
2. Intracranial Hemorrhage Segmentation Using Deep Convolutional Model;Hssayeni;arXiv,2019
3. A survey on deep learning in medical image analysis
4. Development and Validation of Deep Learning Algorithms for Detection of Critical Findings in Head CT Scans;Chilamkurthy;arXiv,2018
5. Curriculum semi-supervised segmentation;Kervadec;arXiv,2019
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献