Author:
Huang Yi-Qi,Zheng Jia-Chun,Sun Shi-Dan,Yang Cheng-Fu,Liu Jing
Abstract
In the intelligent traffic system, real-time and accurate detections of vehicles in images and video data are very important and challenging work. Especially in situations with complex scenes, different models, and high density, it is difficult to accurately locate and classify these vehicles during traffic flows. Therefore, we propose a single-stage deep neural network YOLOv3-DL, which is based on the Tensorflow framework to improve this problem. The network structure is optimized by introducing the idea of spatial pyramid pooling, then the loss function is redefined, and a weight regularization method is introduced, for that, the real-time detections and statistics of traffic flows can be implemented effectively. The optimization algorithm we use is the DL-CAR data set for end-to-end network training and experiments with data sets under different scenarios and weathers. The analyses of experimental data show that the optimized algorithm can improve the vehicles’ detection accuracy on the test set by 3.86%. Experiments on test sets in different environments have improved the detection accuracy rate by 4.53%, indicating that the algorithm has high robustness. At the same time, the detection accuracy and speed of the investigated algorithm are higher than other algorithms, indicating that the algorithm has higher detection performance.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献