Debating the Rules: An Experimental Approach to Assess Cyprinid Passage Performance Thresholds in Vertical Slot Fishways

Author:

Romão Filipe1ORCID,Quaresma Ana L.1ORCID,Simão Joana2,Bravo-Córdoba Francisco J.3,Viseu Teresa2ORCID,Santos José M.4ORCID,Sanz-Ronda Francisco J.5ORCID,Pinheiro António N.1ORCID

Affiliation:

1. CERIS—Civil Engineering for Research and Innovation for Sustainability, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

2. LNEC—National Laboratory for Civil Engineering, Hydraulics and Environment Department, Water Resources and Hydraulic Structures, Av. do Brasil 101, 1700-066 Lisbon, Portugal

3. GEA-Ecohidráulica, Centro Tecnológico Agrario y Agroalimentario Itagra.ct, 34004 Palencia, Spain

4. CEF—Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal

5. GEA-Ecohidráulica, Area of Hydraulics and Hydrology, Department of Agroforestry Engineering, University of Valladolid, 34004 Palencia, Spain

Abstract

Throughout the world, emerging barriers in river systems block longitudinal connectivity for migrating fish, causing significant impacts by precluding them from carrying out vital life cycle activities. Fishways are still the main mitigation solution implemented, where barrier removal is not feasible. Within the multiple technical fish passage devices, the vertical slot fishway (VSF) is considered the most reliable. Early design guidelines, established for cyprinids, indicate that the volumetric dissipation power (Pv) in the pools should be Pv < 150 Wm−3, while most frequent slope values range from 10 to 12%. In this study, an experimental approach was conducted to question and debate the validity of these recommendations. For this, the Iberian barbel (Luciobarbus bocagei, Steindachner, 1864) passage performance was assessed in a full-scale fishway that exceeded Pv design guidelines, under different configurations. These varied in discharge (Q) and mean pool water depth (hm): VSF1 (Q = 81 Ls−1; hm = 0.55 m); VSF2 (Q = 110 Ls−1; hm = 0.80 m); and the same design was equipped with a deep notch: DN1 (Q = 71 Ls−1; hm = 0.55 m); DN2 (Q = 99 Ls−1; hm = 0.80 m). The slope was set to 15.2% while the head drop per pool was Δh = 0.28 m, which generated a Pv that ranged from 222 in VSF1 to 187 Wm−3 in DN2. Passage behaviour was assessed using PIT telemetry and time-to-event analysis to evaluate the barbel upstream passage using standardized metrics: (i) motivation (ii) ascend success, and (iii) transit time. The hydrodynamic scenarios experienced by fish were characterized through a numerical model using computational fluid dynamics (CFD). The results, contrary to what was expected, showed a higher performance in VSF1 confirmed by the ascent analysis and transit time. Although no differences were found in fish motivation, the results indicate that larger fish displayed lower times to perform the first passage attempt. The CFD results show that, although maximum velocities and turbulence (turbulent kinetic energy (TKE) and Reynolds shear stress (RSS)) do not change significantly between configurations, their distribution in the pools is quite different. Regarding TKE, larger volumes with magnitudes higher than 0.05 m2s−2 were notorious in both DN1 and DN2 configurations compared to VSF1, influencing passage efficiency which is in line with the ascent and transit time metrics results. Overall, the present research undeniably debates the literature design guidelines and reinforces the need to jointly assess species-specific fish passage criteria and fishway hydrodynamics, whereas precaution should be taken when using very general recommendations.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3