Integrating Geographic Information Systems and Hydrometric Analysis for Assessing and Mitigating Building Vulnerability to Flash Flood Risks

Author:

Wahba Mohamed1ORCID,El-Rawy Mustafa234ORCID,Al-Arifi Nassir3

Affiliation:

1. Civil Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt

2. Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt

3. Chair of Natural Hazards and Mineral Resources, Geology and Geophysics Department, King Saud University, Riyadh 11451, Saudi Arabia

4. Civil Engineering Department, College of Engineering, Shaqra University, Dawadmi 11911, Saudi Arabia

Abstract

Climate change represents an overwhelming challenge that demands urgent intervention for effective resolution. Among the devastating consequences of climate change, flash floods stand out as one of the most catastrophic repercussions. This research focuses on two primary objectives. Firstly, it aims to evaluate the existing state of flash flood intensity (FFI) in a specific area of Hamamatsu city, Japan, which frequently experiences flash flood incidents. Secondly, it seeks to develop a mitigation plan to alleviate the adverse impacts of flooding on buildings within the area. To accomplish these objectives, four parameters related to FFI (namely, runoff depth, runoff velocity, runoff duration, and affected portion) were selected and estimated through the implementation of hydrological and hydrodynamic models. Additionally, a hydrological model was employed, utilizing a storm event with a return period of 100 years as input. During this simulated storm event, FFI values were calculated and categorized into four distinct levels. The results revealed that more than one-tenth of the examined buildings encountered the highest scale of FFI (category 4), while categories 3 and 4 combined accounted for nearly three-quarters of all buildings in the study area. Moreover, two mitigation strategies were adopted to prevent flooding within the buildings’ vicinity. Finally, this study provides a valuable framework and guidance for decision-makers and insurance companies, enabling them to assess the flood hazard status of buildings and make informed decisions accordingly.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3