Automatic Vertebral Rotation Angle Measurement of 3D Vertebrae Based on an Improved Transformer Network

Author:

Huo Xing1ORCID,Li Hao1ORCID,Shao Kun2ORCID

Affiliation:

1. School of Mathematics, Hefei University of Technology, Hefei 230601, China

2. School of Software, Hefei University of Technology, Hefei 230601, China

Abstract

The measurement of vertebral rotation angles serves as a crucial parameter in spinal assessments, particularly in understanding conditions such as idiopathic scoliosis. Historically, these angles were calculated from 2D CT images. However, such 2D techniques fail to comprehensively capture the intricate three-dimensional deformities inherent in spinal curvatures. To overcome the limitations of manual measurements and 2D imaging, we introduce an entirely automated approach for quantifying vertebral rotation angles using a three-dimensional vertebral model. Our method involves refining a point cloud segmentation network based on a transformer architecture. This enhanced network segments the three-dimensional vertebral point cloud, allowing for accurate measurement of vertebral rotation angles. In contrast to conventional network methodologies, our approach exhibits notable improvements in segmenting vertebral datasets. To validate our approach, we compare our automated measurements with angles derived from prevalent manual labeling techniques. The analysis, conducted through Bland–Altman plots and the corresponding intraclass correlation coefficient results, indicates significant agreement between our automated measurement method and manual measurements. The observed high intraclass correlation coefficients (ranging from 0.980 to 0.993) further underscore the reliability of our automated measurement process. Consequently, our proposed method demonstrates substantial potential for clinical applications, showcasing its capacity to provide accurate and efficient vertebral rotation angle measurements.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3