Following the Beat: Imaging the Valveless Pumping Function in the Early Embryonic Heart

Author:

Wang ShangORCID,Larina Irina V.

Abstract

In vertebrates, the coordinated beat of the early heart tube drives cardiogenesis and supports embryonic growth. How the heart pumps at this valveless stage marks a fascinating problem that is of vital significance for understanding cardiac development and defects. The developing heart achieves its function at the same time as continuous and dramatic morphological changes, which in turn modify its pumping dynamics. The beauty of this muti-time-scale process also highlights its complexity that requires interdisciplinary approaches to study. High-resolution optical imaging, particularly fast, four-dimensional (4D) imaging, plays a critical role in revealing the process of pumping, instructing numerical modeling, and enabling biomechanical analyses. In this review, we aim to connect the investigation of valveless pumping mechanisms with the recent advancements in embryonic cardiodynamic imaging, facilitating interactions between these two areas of study, in hopes of encouraging and motivating innovative work to further understand the early heartbeat.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational approaches for mechanobiology in cardiovascular development and diseases;Current Topics in Developmental Biology;2024

2. High-resolution 3D biomechanical mapping of embryos with reverberant optical coherence elastography (Rev-OCE);Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII;2023-03-08

3. Recent advances in quantifying the mechanobiology of cardiac development via computational modeling;Current Opinion in Biomedical Engineering;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3