Numerical Study of Remote Sensed Dredging Impacts on the Suspended Sediment Transport in China’s Largest Freshwater Lake

Author:

Lu Jianzhong,Li Haijun,Chen Xiaoling,Liang Dong

Abstract

As the largest freshwater lake in China, Poyang Lake plays an important role in the ecosystem of the Yangtze River watershed. The high suspended sediment concentration (SSC) has been an increasingly significant problem under the influence of extensive sand dredging. In this study, a hydrodynamic model integrated with the two-dimensional sediment transport model was built for Poyang Lake, considering sand dredging activities detected from satellite images. The sediment transport model was set with point sources of sand dredging, and fully calibrated and validated by observed hydrological data and remote sensing results. Simulations under different dredging intensities were implemented to investigate the impacts of the spatiotemporal variation of the SSC. The results indicated that areas significantly affected by sand dredging were located in the north of the lake and along the waterway, with a total affected area of about 730 km2, and this was one of the main factors causing high turbidity in the northern part of the lake. The SSC in the northern area increased, showing a spatial pattern in which the SSC varied from high to low from south to north along the main channel, which indicated close agreement with the results captured by remote sensing. In summary, this study quantified the influence of human induced activities on sediment transport for the lake aquatic ecosystem, which could help us to better understand the water quality and manage water resources.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3