Comparison between Synthetic and Biodegradable Polymer Matrices on the Development of Quartzite Waste-Based Artificial Stone

Author:

Agrizzi Carlos PaulinoORCID,Carvalho Elaine Aparecida Santos,Borlini Gadioli Mônica CastoldiORCID,Barreto Gabriela Nunes Sales,de Azevedo Afonso R. G.ORCID,Monteiro Sérgio Neves,Vieira Carlos Maurício Fontes

Abstract

The development of artificial stone from the agglutination of polymeric resin using industrial wastes can be a viable alternative from a technical, economic, and sustainable point of view. The main objective of the present work was to evaluate the physical, mechanical, and structural properties of artificial stones based on quartzite waste added into a synthetic, epoxy, or biodegradable polyurethane polymer matrix. Artificial stone plates were produced through the vacuum vibration and compression method, using 85 wt% of quartzite waste. The material was manufactured under the following conditions: 3 MPa compaction pressure and 90 and 80 °C curing temperature. The samples were characterized to evaluate physical and mechanical parameters and microstructure properties. As a result, the artificial stone plates developed obtained ≤0.16% water absorption, ≤0.38% porosity, and 26.96 and 10.7 MPa flexural strength (epoxy and polyurethane resin, respectively). A wear test established both artificial quartzite stone with epoxy resin (AS-EP) and vegetable polyurethane resin (AS-PU) high traffic materials. Hard body impact resistance classified AS-EP as a low height material and AS-PU as a very high height material. The petrographic slides analysis revealed that AS-EP has the best load distribution. We concluded the feasibility of manufacturing artificial stone, which would minimize the environmental impacts that would be caused by this waste disposal. We concluded that the production of artificial rock shows the potential and that it also helps to reduce environmental impacts.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference42 articles.

1. Review of environmental aspects and waste management of stone cutting and fabrication industries

2. Application of marble waste in the polymeric industry;Souza;Environ. Technol. Ser.,2009

3. Ornamental Stone Technology: Research, Mining and Processing;Vidal,2014

4. Artificial stone slab production using waste glass, stone fragments and vacuum vibratory compaction

5. Balance of Brazilian Exports and Imports of Dimension Stones in 2019 https://abirochas.com.br/wp-content/uploads/2020/10/Informe-01_2020-Balanco_2019.pdf

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3