On Information Granulation via Data Clustering for Granular Computing-Based Pattern Recognition: A Graph Embedding Case Study

Author:

Martino AlessioORCID,Baldini LucaORCID,Rizzi AntonelloORCID

Abstract

Granular Computing is a powerful information processing paradigm, particularly useful for the synthesis of pattern recognition systems in structured domains (e.g., graphs or sequences). According to this paradigm, granules of information play the pivotal role of describing the underlying (possibly complex) process, starting from the available data. Under a pattern recognition viewpoint, granules of information can be exploited for the synthesis of semantically sound embedding spaces, where common supervised or unsupervised problems can be solved via standard machine learning algorithms. In this work, we show a comparison between different strategies for the automatic synthesis of information granules in the context of graph classification. These strategies mainly differ on the specific topology adopted for subgraphs considered as candidate information granules and the possibility of using or neglecting the ground-truth class labels in the granulation process. Computational results on 10 different open-access datasets show that by using a class-aware granulation, performances tend to improve (regardless of the information granules topology), counterbalanced by a possibly higher number of information granules.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference85 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Information Granulation via Data Filtering for Granular Computing-Based Pattern Recognition: A Graph Embedding Case Study;SN Computer Science;2023-04-08

2. Algebraic Structure Based Clustering Method from Granular Computing Prospective;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems;2023-02

3. Facing Graph Classification Problems by a Multi-agent Information Granulation Approach;Studies in Computational Intelligence;2023

4. Density peak clustering based on sparrow search algorithm and improved shared nearest neighbor;Second International Conference on Advanced Algorithms and Signal Image Processing (AASIP 2022);2022-11-23

5. Graph-Based Multi-Label Classification for WiFi Network Traffic Analysis;Applied Sciences;2022-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3