A Modified Hydrologic Model Algorithm Based on Integrating Graph Theory and GIS Database

Author:

Shiu Chia-Cheng,Chiang TzupingORCID,Chung Chih-ChungORCID

Abstract

Ensuring high quantity and quality of water for humans is becoming more important because of the water supply risks in extreme climates. With increasing urbanization, urban water resource management is becoming increasingly important. The hydrologic analysis of water supply pipelines can help decision-makers understand water pressure, flow rate, water quality, and possible leakages, extending feasible strategies for sustainable development and smart cities. In this study, an improved urban hydrologic analysis model was built by integrating the connectivity of graph theory and the geographic information system (GIS) database. The Neihu Division of the Taipei Water Department in Taiwan was taken as an example to explain the proposed process and method, and 15,131 confluence data items were used to analyze the differences between the proposed method and WaterGEMS. The results show that of the total head parameters, 72% had zero differences, 28% had a difference of less than 1 m, and about 99% of the confluences had a water pressure difference of less than 1 m. The comparison of 120 on-site water pressure measurements showed that about 85% of the confluences had an error of less than 20%. The above results demonstrated the applicability of the proposed method for water resource management on similar scales and its benefit for the development of smart cities.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference17 articles.

1. The United Nations World Water Development Report 2015: Water for a Sustainable World,2015

2. Transforming Our World: The 2030 Agenda for Sustainable Development,2016

3. Water resources management in the Island of Crete, Greece, with emphasis on the agricultural use

4. Climate change research in Taiwan: beyond following the mainstream

5. Taipei Water Department Statistical Yearbook 2021,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3