Geochemical Composition, Source and Geothermometry of Thermal Water in the Bugok Area, South Korea

Author:

Jeong Chanho,Lee Yujin,Lee YongcheonORCID,Ahn Sangwon,Nagao Keisuke

Abstract

Thermal water from the hot springs around Bugok, South Korea, has the highest discharge temperature (78 °C), and the source of that heat is of primary interest. The key 3He/4He ratio runs along a single air-mixing line between the mantle and the crust, with the latter accounting for 97.0–97.3%. This suggests that the thermal source is radioactive decay in granodiorite, rock that intruded beneath the Cetaceous era sedimentary rock. Thermal water containing Na–HCO3 (SO4) evolved geochemically from stream water and groundwater containing Ca–HCO3. With respect to δ34S, there are two types of thermal water: low temperature with low δ34S (−3.00~+1.00‰), and high temperature with high δ34S (+4.60~+15.0‰), which is enriched by the kinetic fractionation of H2S. The thermal water samples, except for a few, reached partial chemical equilibrium. The thermal reservoir temperatures were estimated as in the range of 90–126 °C by the K–Mg geothermometer of Giggenbach and the thermodynamic equilibrium of quartz and muscovite. This study suggests a conceptual model for the formation of geothermal water, including the thermal reservoir in the Bugok area.

Funder

Daejeon University Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference71 articles.

1. The Hot Springs Status of all the Country in 2020,2020

2. Geochemical and Isotopic Compositions and Geothermometry of Thermal Waters in the Magumsan Area, South Korea

3. Relationship analysis between lithology, geological time and geothermal gradient of South Korea;Kim;Econ. Environ. Geol.,2002

4. Resources Survey and Analysis Report of Bugok Hot Spring,1989

5. Noble gases in diamonds: Occurrences of solarlike helium and neon

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3