Performance Comparison of Multiple Convolutional Neural Networks for Concrete Defects Classification

Author:

Arafin Palisa,Issa Anas,Billah A. H. M. MuntasirORCID

Abstract

Periodical vision-based inspection is a principal form of structural health monitoring (SHM) technique. Over the last decades, vision-based artificial intelligence (AI) has successfully facilitated an effortless inspection system owing to its exceptional ability of accuracy of defects’ pattern recognition. However, most deep learning (DL)-based methods detect one specific type of defect, whereas DL has a high proficiency in multiple object detection. This study developed a dataset of two types of defects, i.e., concrete crack and spalling, and applied various pre-built convolutional neural network (CNN) models, i.e., VGG-19, ResNet-50, InceptionV3, Xception, and MobileNetV2 to classify these concrete defects. The dataset developed for this study has one of the largest collections of original images of concrete crack and spalling and avoided the augmentation process to replicate a more real-world condition, which makes the dataset one of a kind. Moreover, a detailed sensitivity analysis of hyper-parameters (i.e., optimizers, learning rate) was conducted to compare the classification models’ performance and identify the optimal image classification condition for the best-performed CNN model. After analyzing all the models, InceptionV3 outperformed all the other models with an accuracy of 91%, precision of 83%, and recall of 100%. The InceptionV3 model performed best with optimizer stochastic gradient descent (SGD) and a learning rate of 0.001.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3