Author:
Shi Yulong,Zhang Yang,Jacobsen Hans-Arno,Tang Lulu,Elliott Geoffrey,Zhang Guanqun,Chen Xiwei,Chen Junliang
Abstract
At present, most publish/subscribe middlewares suppose that there are equal Quality of Service (QoS) requirements for all users. However, in many real-world Internet of Things (IoT) service scenarios, different users may have different delay requirements. How to provide reliable differentiated services has become an urgent problem. The rise of Software-Defined Networking (SDN) provides endless possibilities to improve the QoS of publish/subscribe middlewares due to its greater programmability. We can encode event topics and priorities into flow entries of SDN switches directly to meet customized requirements. In this paper, we first propose an SDN-like publish/subscribe middleware architecture and describe how to use this architecture and priority queues supported by OpenFlow switches to realize differentiated services. Then we present a machine learning method using the eXtreme Gradient Boosting (XGBoost) model to solve the difficult issue of getting the queuing delay of switches accurately. Finally, we propose a reliable differentiated services guarantee mechanism according to the queuing delay and the programmability of SDN to improve QoS, namely, a two-layer queue management mechanism. Experimental evaluations show that the delay predicted by the XGBoost method is closer to the real value; our mechanism can save end-to-end delay, reduce packet loss rate, and allocate bandwidth more reasonably.
Funder
National Key Research and Development Program of China
State Scholarship Fund of China Scholarship Council
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献