A Spatial Analytics Framework to Investigate Electric Power-Failure Events and Their Causes

Author:

Sultan Vivian,Hilton Brian

Abstract

The U.S. electric-power infrastructure urgently needs renovation. Recent major power outages in California, New York, Texas, and Florida have highlighted U.S. electric-power unreliability. The media have discussed the U.S. aging power infrastructure and the Public Utilities Commission has demanded a comprehensive review of the causes of recent power outages. This paper explores geographic information systems (GIS) and a spatially enhanced predictive power-outage model to address: How may spatial analytics enhance our understanding of power outages? To answer this research question, we developed a spatial analysis framework that utilities can use to investigate power-failure events and their causes. Analysis revealed areas of statistically significant power outages due to multiple causes. This study’s GIS model can help to advance smart-grid reliability by, for example, elucidating power-failure root causes, defining a data-responsive blackout solution, or implementing a continuous monitoring and management solution. We unveil a novel use of spatial analytics to enhance power-outage understanding. Future work may involve connecting to virtually any type of streaming-data feed and transforming GIS applications into frontline decision applications, showing power-outage incidents as they occur. GIS can be a major resource for electronic-inspection systems to lower the duration of customer outages, improve crew response time, as well as reduce labor and overtime costs.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference27 articles.

1. The $306 Billion Question: How to Make Outage Management Better?https://www.power-grid.com/2018/06/12/the-306-billion-question-how-to-make-outage-management-better/#gref

2. 2009 Infrastructure Fact Sheethttp://www.infrastructurereportcard.org/2009/sites/default/files/RC2009_rail.pdf

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3