Integrated Visualization Approach for Real-Time and Dynamic Assessment of Storm Surge Disasters for China’s Seas

Author:

Zhou Lin,Hu Wei,Jia Zhen,Li Xinfang,Li Yaru,Su Tianyun,Guo QingshengORCID

Abstract

For improved prevention and reduction of marine disasters, China’s marine authorities and emergency response agencies require a solution that provides risk assessment, early warning, and decision-making support. This paper proposes a comprehensive approach to disaster assessment that involves automated long-term operation, a spatial information visualization method and systematic integration. The proposed approach provides functions for numerical ocean models with forecast results, automated processing of massive data, multiple disaster/element coupled assessment, and multidimensional display and expression. With regard to storm surge disasters, the approach proposed in this paper adopts a four-tier structure and the functions of each tier are described separately. The original data are comprised of a combination of statistical analysis data and real-time data obtained from the unstructured grid Finite Volume Community Ocean Model. Automated data processing methods and assessment theories incorporating an indicator system and weighted parameters are used for the assessment. By applying 2D/3D visualization technology, assessment results are displayed via several modes for ease of operation and comprehension. The validity of the approach was verified by applying it to Typhoon Hato (No. 1713). Compared with the results of the post-disaster investigation, the assessment results of the proposed approach proved the reliability of the system.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference32 articles.

1. Spatial–temporal distribution of storm surge damage in the coastal areas of China

2. HYbrid Coordinate Ocean Model (HYCOM) User’s Manualhttps://hycom.org/attachments/063_hycom_users_manual.pdf

3. NEMO Ocean Enginehttps://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf

4. A Historical Introduction to MOMhttps://mom-ocean.github.io/assets/pdfs/mom_history_2017.09.19.pdf

5. Technical Manual for a Coupled Sea-Ice/Ocean Circulation Model (Version 5)https://github.com/kshedstrom/roms_manual/blob/master/roms_manual.pdf

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3