Abstract
Geospatial information is gaining immense interest and importance as we enter the era of highly developed transportation and communication. Despite the proliferation of cellular network and WiFi, on some occasions, users still face barriers to accessing geospatial data. In this paper, we design and implement a distributed prototype system with a delay/disruption tolerant network (DTN), named Geo-DMP, for cooperatively and opportunistically sharing and exchanging named geospatial contents in a device-to-device fashion. First of all, we construct a lightweight “content agent” module to bridge the gap between the application layer and the underlying DTN protocol stack. Afterwards, to profile the mobility history of users in practical geospatial environments, we present a map segmentation scheme based on road network and administrative subdivision information. Subsequently, we associate the regional movement history information with the content retrieval process to devise a hierarchical and region-oriented DTN routing scheme for both requests and responses. Finally, we conduct extensive experiments with real-world trajectories and complete implementations on the emulation platform composed of virtual machines. The experiments corroborate that Geo-DMP has the capability of successfully retrieving geospatial contents for users for most of the time under mobile circumstances with episodic connectivity. Moreover, en-route caches can be efficiently exploited to provision contents from multiple sources with less network resource consumption and shorter user-perceived latencies.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rapid Position Initialization for Automated Automotive Applications;Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021);2021-10-13