Resolution Enhancement of Remotely Sensed Land Surface Temperature: Current Status and Perspectives

Author:

Mao Qi,Peng Jian,Wang Yanglin

Abstract

Remotely sensed land surface temperature (LST) distribution has played a valuable role in land surface processes studies from local to global scales. However, it is still difficult to acquire concurrently high spatiotemporal resolution LST data due to the trade-off between spatial and temporal resolutions in thermal remote sensing. To address this problem, various methods have been proposed to enhance the resolutions of LST data, and substantial progress in this field has been achieved in recent years. Therefore, this study reviewed the current status of resolution enhancement methods for LST data. First, three groups of enhancement methods—spatial resolution enhancement, temporal resolution enhancement, and simultaneous spatiotemporal resolution enhancement—were comprehensively investigated and analyzed. Then, the quality assessment strategies for LST resolution enhancement methods and their advantages and disadvantages were specifically discussed. Finally, key directions for future studies in this field were suggested, i.e., synergy between process-driven and data-driven methods, cross-comparison among different methods, and improvement in localization strategy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3