Detection of Leek Rust Disease under Field Conditions Using Hyperspectral Proximal Sensing and Machine Learning

Author:

Appeltans SimonORCID,Pieters Jan G.,Mouazen Abdul M.ORCID

Abstract

Rust disease is an important problem for leek cultivation worldwide. It reduces market value and in extreme cases destroys the entire harvest. Farmers have to resort to periodical full-field fungicide applications to prevent the spread of disease, once every 1 to 5 weeks, depending on the cultivar and weather conditions. This implies an economic cost for the farmer and an environmental cost for society. Hyperspectral sensors have been extensively used to address this issue in research, but their application in the field has been limited to a relatively low number of crops, excluding leek, due to the high investment costs and complex data gathering and analysis associated with these sensors. To fill this gap, a methodology was developed for detecting leek rust disease using hyperspectral proximal sensing data combined with supervised machine learning. First, a hyperspectral library was constructed containing 43,416 spectra with a waveband range of 400–1000 nm, measured under field conditions. Then, an extensive evaluation of 11 common classifiers was performed using the scikit-learn machine learning library in Python, combined with a variety of wavelength selection techniques and preprocessing strategies. The best performing model was a (linear) logistic regression model that was able to correctly classify rust disease with an accuracy of 98.14%, using reflectance values at 556 and 661 nm, combined with the value of the first derivative at 511 nm. This model was used to classify unlabelled hyperspectral images, confirming that the model was able to accurately classify leek rust disease symptoms. It can be concluded that the results in this work are an important step towards the mapping of leek rust disease, and that future research is needed to overcome certain challenges before variable rate fungicide applications can be adopted against leek rust disease.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3