Abstract
In the past few decades, target detection from remote sensing images gained from aircraft or satellites has become one of the hottest topics. However, the existing algorithms are still limited by the detection of small remote sensing targets. Benefiting from the great development of computing power, deep learning has also made great breakthroughs. Due to a large number of small targets and complexity of background, the task of remote sensing target detection is still a challenge. In this work, we establish a series of feature enhancement modules for the network based on YOLO (You Only Look Once) -V3 to improve the performance of feature extraction. Therefore, we term our proposed network as FE-YOLO. In addition, to realize fast detection, the original Darknet-53 was simplified. Experimental results on remote sensing datasets show that our proposed FE-YOLO performs better than other state-of-the-art target detection models.
Funder
National Natural Science Foundation of China
National Laboratory of Pattern Recognition
Subject
General Earth and Planetary Sciences
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献