Explicit Baker–Campbell–Hausdorff Expansions

Author:

Van-Brunt Alexander,Visser MattORCID

Abstract

The Baker–Campbell–Hausdorff (BCH) expansion is a general purpose tool of use in many branches of mathematics and theoretical physics. Only in some special cases can the expansion be evaluated in closed form. In an earlier article we demonstrated that whenever [X,Y]=uX+vY+cI, BCH expansion reduces to the tractable closed-form expression Z(X,Y)=ln(eXeY)=X+Y+f(u,v)[X,Y], where f(u,v)=f(v,u) is explicitly given by the the function f(u,v)=(u−v)eu+v−(ueu−vev)uv(eu−ev)=(u−v)−(ue−v−ve−u)uv(e−v−e−u). This result is much more general than those usually presented for either the Heisenberg commutator, [P,Q]=−iℏI, or the creation-destruction commutator, [a,a†]=I. In the current article, we provide an explicit and pedagogical exposition and further generalize and extend this result, primarily by relaxing the input assumptions. Under suitable conditions, to be discussed more fully in the text, and taking LAB=[A,B] as usual, we obtain the explicit result ln(eXeY)=X+Y+Ie−LX−e+LYI−e−LXLX+I−e+LYLY[X,Y]. We then indicate some potential applications.

Funder

Marsden Fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference26 articles.

1. The early proofs of the theorem of Campbell, Baker, Hausdorff, and Dynkin

2. Topics in Noncommutative Algebra

3. Calculation of the coefficients in the Campbell-Hausdorff formula;Dynkin;Dokl. Akad. Nauk SSSR,1947

4. On the representation by means of commutators of the series log(exey) for noncommuting x, y;Dynkin;Mat. Sb.,1949

5. The formal power series for logexey

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3