Author:
Yoon Dae,Kim Dong-Soo,Kim Young,Lee Jae
Abstract
In this paper, we study submanifolds in a Euclidean space with a generalized 1-type Gauss map. The Gauss map, G, of a submanifold in the n-dimensional Euclidean space, En, is said to be of generalized 1-type if, for the Laplace operator, Δ, on the submanifold, it satisfies ΔG=fG+gC, where C is a constant vector and f and g are some functions. The notion of a generalized 1-type Gauss map is a generalization of both a 1-type Gauss map and a pointwise 1-type Gauss map. With the new definition, first of all, we classify conical surfaces with a generalized 1-type Gauss map in E3. Second, we show that the Gauss map of any cylindrical surface in E3 is of the generalized 1-type. Third, we prove that there are no tangent developable surfaces with generalized 1-type Gauss maps in E3, except planes. Finally, we show that cylindrical hypersurfaces in En+2 always have generalized 1-type Gauss maps.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献