Chitosan–Resole–Pectin Aerogel in Methylene Blue Removal: Modeling and Optimization Using an Artificial Neuron Network

Author:

Flores-Gómez Jean1ORCID,Villegas-Ruvalcaba Mario2,Blancas-Flores José2ORCID,Morales-Rivera Juan1ORCID

Affiliation:

1. Studies on Water and Energy Department, University of Guadalajara, Guadalajara 45425, Mexico

2. Basic and Applied Sciences Department, University of Guadalajara, Guadalajara 45425, Mexico

Abstract

In this study, a novel chitosan–resole–pectin aerogel (CS–R–P) was created from a sol–gel reaction with a solution of Cs and P with resole by a freeze-drying technique, and this adsorbent was proposed for the removal of methylene blue (MB). In addition, with the use of an artificial intelligence technique known as an artificial neural network (ANN), this material was modeled and optimized. Its physical morphology and chemical composition were also characterized with FTIR and XPS, and its adsorption properties were analyzed. For modeling the adsorption process, three main parameters were used: the chitosan–resole–pectin concentration (45–75%), thermal treatment (6–36 h), and known concentrations of methylene blue (25–50 and 100 mg/L), established on the Box–Behnken design. The ANN was coupled with the improved gray wolf optimization (IWGO) metaheuristic algorithm, achieving a correlation coefficient of R2 = 0.99. The characterization indicates that the surface of the aerogels was micro- and mesoporous, the resole gave physical stability, and the polysaccharide base delivered the functional groups necessary for dye adsorption; the aerogels were successful dye adsorbents with a qe of 12.44 mg/g. Finally, the physical and chemical sorption was ascertainable with an adsorption that followed pseudo-second-order kinetics. The MB adsorption was clearly occurring though cation exchange and hydrogen binding as observed in the chemical composition. The ANN with the gray wolf optimizer was used for the prediction of the best operating parameters for MB removal, applying the following conditions—the CS–R–P aerogel concentration (52/30/18), the thermal treatment (9.12 h), and the initial concentration of methylene blue (37 mg/L)—achieving a 94.6% removal. These conclusions suggest that using artificial intelligence such as an ANN can provide an efficient and practical model for maximizing the removal action of new aerogels based on chitosan.

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3