Effect of a Tetraethoxysilane Hydrolysis Reaction Catalyst on the Precipitation of Hydrolysis Products in the Pores of a Polyimide Track Membrane

Author:

Cherkashina Natalia Igorevna1ORCID,Pavlenko Vyacheslav Ivanovich1,Domarev Semen Nikolayevich1,Kashibadze Nikolay Valeriyevich1

Affiliation:

1. Department of Theoretical and Applied Chemistry, Belgorod State Technological University Named after V.G. Shukhov, 308012 Belgorod, Russia

Abstract

This paper presents the results of obtaining a composite film based on polyimide track membranes filled with a silica filler, although the issue of the deposition of this filler in the pores of the given membranes remained unexplored. The filler was obtained by hydrolysis of tetraethoxysilane using an alkaline and acid catalyst. This paper presents the results of the effect of the tetraethoxysilane hydrolysis reaction catalyst on the precipitation of hydrolysis products in the pores of the polyimide track membrane. The factors influencing the formation of silicon oxide nanofibers within the matrix template (polyimide track membrane) are determined. It was found that the use of an acid catalyst provides the highest rates of filling, while when using an alkaline catalyst, the filling is practically not observed, and only single pores are filled. The properties of the composite film obtained were investigated. SEM images of the surface and chip of the composite while using alkaline and acid catalyst are presented. The spatial structure of composite films based on track membranes was investigated by FTIR spectroscopy. The hydrolysis of tetraethoxysilane in an acid medium significantly decreases the optical density index of the membranes and simultaneously increases their light transmission index. The greatest changes are observed in the range of 500–1000 nm, and there are no detectable changes in the range of 340–500 nm. When using an alkaline catalyst, there is not the same significant decrease in the relative optical density index D.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3