Ti/Zr/O Mixed Oxides for the Catalytic Transfer Hydrogenation of Furfural to GVL in a Liquid-Phase Continuous-Flow Reactor

Author:

Saotta Anna12,Allegri Alessandro12ORCID,Liuzzi Francesca12,Fornasari Giuseppe12,Dimitratos Nikolaos12ORCID,Albonetti Stefania12ORCID

Affiliation:

1. Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy

2. Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy

Abstract

This work aims to develop an efficient catalyst for the cascade reaction from furfural to γ-valerolactone in a liquid-phase continuous reactor. This process requires both Lewis and Brønsted acidity; hence, a bifunctional catalyst is necessary to complete the one-pot reaction. Ti/Zr/O mixed oxide-based catalysts were chosen to this end as balancing metal oxide composition allows the acidity characteristics of the overall material to be modulated. Oxides with different compositions were then synthesized using the co-precipitation method. After characterization via porosimetry and NH3-TPD, the catalyst with equimolar quantities of the two components was demonstrated to be the best one in terms of superficial area (279 m2/g) and acid site density (0.67 mmol/g). The synthesized materials were then tested using a plug flow reactor at 180 °C, with a 10 min contact time. Ti/Zr/O (1:1) was demonstrated to be the most promising catalyst during the recycling tests as it allowed obtaining the highest selectivities in the desired products (about 45% in furfuryl isopropyl ether and 20% in γ-valerolactone) contemporaneously with 100% furfural conversion.

Funder

Toso Montanari Foundation

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3