Electrokinetic Forces as an Electrical Measure of Chemical Aging Potential in Granular Materials

Author:

Castilla-Barbosa Miguel1ORCID,Rincón-Arango Orlando2,Ocampo-Terreros Manuel1ORCID

Affiliation:

1. Departamento de Ingenieria Civil, Pontificia Universidad Javeriana, Bogota 110231, Colombia

2. Infrastructure Division, WSP Colombia, Bogota 111311, Colombia

Abstract

The zeta potential of soils is an electric potential in the double-layer interface and is a physical property exhibited by any particle related to electrochemical attractive forces. On the other hand, the chemical aging phenomenon is seen as the chief mechanism of the aging of sands due to the dissolution and precipitation of minerals, resulting in the development of the cementation of particles in granular mediums. The present investigation focuses on determining whether granular materials can generate cementation due to electrokinetic forces, and if the zeta potential could be related as a measure of the potential of chemical aging. X-ray fluorescence and diffraction tests were performed to characterize four representative fractions of one kind of sand, and zeta potential studies were carried out to determine the electrical potential on the mineral surfaces of each one. Zeta potential analysis showed both dependence on the mineralogical content and the variation in the pH of the colloidal solution fluid because the increase in OH- ion concentrations increases the thickness of the diffuse double layer and the electrokinetic forces of attraction. Moreover, the zeta potential showed an increase in the thickness of the diffuse double layer, due to the electrokinetic forces, which can be associated with the development of cohesive forces with a dependence on the mineralogy of sands.

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

Reference68 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3