Evaluating Electrochemical Properties of Layered NaxMn0.5Co0.5O2 Obtained at Different Calcined Temperatures

Author:

Nguyen Le Minh1,Nguyen Van Hoang12ORCID,Nguyen Doan My Ngoc13,Le Minh Kha23,Tran Van Man123,Le My Loan Phung123ORCID

Affiliation:

1. Applied Physical Chemistry Laboratory (APCLAB), VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam

2. Viet Nam National University Ho Chi Minh City (VNUHCM), Ho Chi Minh City 700000, Vietnam

3. Department of Physical Chemistry, Faculty of Chemistry, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam

Abstract

P-type layered oxides recently became promising candidates for Sodium-ion batteries (NIBs) for their high specific capacity and rate capability. This work elucidated the structure and electrochemical performance of the layered cathode material NaxMn0.5Co0.5O2 (NMC) with x~1 calcined at 650, 800 and 900 °C. XRD diffraction indicated that the NMC material possessed a phase transition from P3- to P2-type layered structure with bi-phasic P3/P2 at medium temperature. The sodium storage behavior of different phases was evaluated. The results showed that the increased temperature improved the specific capacity and cycling stability. P2-NMC exhibited the highest initial capacity of 156.9 mAh·g−1 with capacity retention of 76.2% after 100 cycles, which was superior to the initial discharge capacity of only 149.3 mAh·g−1 and severe capacity fading per cycle of P3-NMC, indicating high robust structure stability by applying higher calcination temperature. The less stable structure also contributed to the fast degradation of the P3 phase at high current density. Thus, the high temperature P2 phase was still the best in sodium storage performance. Additionally, the sodium diffusion coefficient was calculated by cyclic voltammetry (CV) and demonstrated that the synergic effect of the two phases facile the sodium ion migration. Hard carbon||P2-NMC delivered a capacity of 80.9 mAh·g−1 and 63.3% capacity retention after 25 cycles.

Funder

University of Science, Viet Nam National University Ho Chi Minh City

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3