One-Dimensional Modeling of Mass Transfer Processes in an Annular Centrifugal Contactor

Author:

Ritzler Peter M.1,Weiss Clemens K.1ORCID,Seyfang Bernhard C.1

Affiliation:

1. Life Sciences and Engineering, Bingen University of Applied Sciences, Berlinstr. 109, 55411 Bingen am Rhein, Germany

Abstract

Due to the importance of process intensification, modeling of Annular Centrifugal Contactors (ACCs) is becoming of increasing interest. By the current state of scientific knowledge, universal modeling without high computing power of these complex apparatuses is not possible to a satisfactory degree. In this article, a one-dimensional model to describe the mass transfer during a physical extraction process in an ACC is presented. The model is based on solely geometrical data and operating conditions of the ACC, as well as physical properties of the components. Regarding the selection of physical properties, only physical properties that are easily accessible were used. With this model, mass transfer calculations are possible and therefore, the output concentrations can be predicted. Simulations of an ACC based on the model were done by creating and running a python code. Validation of the model was conducted by varying and comparing operating conditions in both the simulation and the experiments. Validation was completed successfully for a representative system of components and showed good agreement over a range of rotational frequencies and temperatures.

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3