Abstract
High-pressure homogenizers (HPH) equipped with a Simultaneous Homogenization and Mixing (SHM) orifice allow for inducing a mixing stream directly into the disruption unit. Previous studies show that by doing so, synergies between the unit operations “emulsification” and “mixing” can be used to save energy, e.g., in homogenization of dairy products, or to extend the application range of HPH. Up to now, process design has mainly been based on the trial and error principle due to incomplete understanding of flow conditions and droplet break-up in the SHM unit. This study aims at a higher level of understanding of cavitation and mixing effects on emulsion droplet size. Experimental data were obtained using a model emulsion of low disperse phase concentration in order to avoid coalescence effects. The different flow conditions are created by varying the process and geometric parameters of an SHM unit. The results show that the oil droplet size only depends on mixing conditions when the emulsion droplets are added in the mixing stream. Furthermore, a smaller oil droplet size can be achieved by reducing cavitation, especially for droplets fed in the high-pressure stream.
Subject
General Energy,General Engineering,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献