Synthesis, Characterization of Magnetic Composites and Testing of Their Activity in Liquid-Phase Oxidation of Phenol with Oxygen

Author:

Dossumova Binara T.,Shakiyeva Tatyana V.,Muktaly Dinara,Sassykova Larissa R.ORCID,Baizhomartov Bedelzhan B.,Subramanian SendilvelanORCID

Abstract

The development and improvement of methods for the synthesis of environmentally friendly catalysts based on base metals is currently an urgent and promising task of modern catalysis. Catalysts based on nanoscale magnetite and maghemite have fast adsorption–desorption kinetics and high chemical activity. The purpose of this work is to obtain magnetic composites, determine their physicochemical characteristics and verify their activity in the process of liquid-phase oxidation of phenol with oxygen. Magnetic nanocomposites were obtained by chemical co-deposition of salts of ferrous and trivalent iron. The synthesized magnetic composites were studied by X-ray diffractometry, energy dispersive X-ray fluorescence and Mössbauer spectroscopy, IR-Fourier spectroscopy and elemental analysis. To increase the catalytic activity in oxidative processes, the magnetite surfaces were modified using cobalt nitrate salt. Further, CoFe2O4 was stabilized by adding polyethylenimine (PEI) as a surfactant. Preliminary studies of the oxidation of phenol with oxygen, as the most typical environmental pollutant were carried out on the obtained Fe3O4, CoFe2O4, CoFe2O4/PEI catalysts. The spectrum of the reaction product shows the presence of CH in the aromatic ring and double C=C bonds, stretching vibrations of the C=O groups of carbonyl compounds; the band at 3059 cm−1 corresponds to the presence of double C=C bonds and the band at 3424 cm−1 to hydroquinone compounds. The band at 1678 cm−1 and the intense band at 1646 cm−1 refer to vibrations of the C=O bonds of the carbonyl group of benzoquinone. Peaks at 1366 cm−1 and 1310 cm−1 can be related to the vibrations of C–H and C–C bonds of the quinone ring. Thus, it was demonstrated that produced magnetic composites based on iron oxide are quite effective in the oxidation of phenol with oxygen.

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3