Experimental Study and Numerical Simulation of Hydrodynamic Parameters of Tangential Swirlers

Author:

Voinov Nikolai A.,Frolov Alexander S.,Bogatkova Anastasiya V.,Zemtsov Denis A.ORCID

Abstract

This paper presents and patents new profiled- and annular-channel tangential swirlers with 1.8–3 times less hydraulic drag coefficient compared to swirlers with straight channel walls at the same flow rate, respectively. The results of numerical simulation of the gas velocity and pressure profiles for tangential swirler channels of different structures are presented. The modelling was carried out with the help of OpenFOAM software using the k-ε turbulence model. It is found that the shape of the velocity profile at the channel inlet has a decisive influence on the swirler drag coefficient. The greatest contribution to the total drag coefficient of the tangential swirler is made by the pressure drop at the channel inlet compared to the pressure drop at the channel wall and the channel outlet. The experimental dependencies of the tangential swirlers’ drag coefficient on the Reynolds number with a gas criterion of 2000–20,000 and the following structural channel parameters: width 1, 2–9 mm, height 1, 5–10 mm, number 5–45 units, inclination angle 0–45° are presented. The experimental data were compared with the modelling calculations and the convergence of data was achieved. The generalized dependence for the measurement of the hydraulic drag coefficient of three types of tangential swirlers considering the effect made by the geometric parameters (flow rate, width and height of the channel, wall inclination angle) on the pressure drop has been determined; it can be useful at the unit design stage as it allows for reducing the calculation time of the swirler parameters.

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3