Modeling of 1,2-Dibromoethane Biodegradation in Constant Electric Field

Author:

Popova-Krumova Petya,Beschkov Venko,Vasileva Evgenia,Parvanova-Mancheva Tsvetomila

Abstract

This study proposes a mathematical modeling approach for evaluating the effect of applying a permanent electric field on the biodegradation of 1,2-dibromoethane by bacterial cells of Bradyrhizobium japonicum 273. Two models for inhibited microbial growth including product inhibition were composed—one using the Monod–Yerusalimsky approach and another one—the Levenspiel kinetic equation. The models were used to process own experimental data obtained without an electric field and ones obtained at the application of an electric field. The experiments were carried out at an optimum anode potential of 0.8 V vs. the standard hydrogen electrode (SHE). Three initial concentrations of substrate were tested: 0.05, 0.1, and 0.15 g dm−3. The modeling takes into account the product inhibition on microbial growth assuming 2-bromoethanol as the first biodegradation product. It was found that the positive effect of the electric field is the enhancement of microbial growth, expressed by the increase in the maximum specific growth rate and the increase in the inhibition constant when the model of Monod–Yerusalimsky is applied. The main effect of the electric field is in the increase in the rate constant of 2-bromoethanol removal by electrochemical oxidation, enabling the enhancement the microbial growth and substrate conversion to the product. The obtained results show that the application of a permanent electric field leads to a higher electrochemical oxidation rate (with a rate constant up to 60% higher than for the control experiments) and complete substrate and 2-bromoethanol biodegradation. The model of Levenspiel is not so sensitive to the effects of the electric field on product inhibition.

Funder

Fund for Scientific Research, Republic of Bulgaria

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3