Photocatalytic Degradation of Tartrazine and Naphthol Blue Black Binary Mixture with the TiO2 Nanosphere under Visible Light: Box-Behnken Experimental Design Optimization and Salt Effect

Author:

Hassan Fadimatou12,Talami Bouba12,Almansba Amira3,Bonnet Pierre4,Caperaa Christophe4ORCID,Dalhatou Sadou2ORCID,Kane Abdoulaye1ORCID,Zeghioud Hicham1ORCID

Affiliation:

1. UniLaSalle-Ecole des Métiers de l’Environnement, Cyclann, Campus de Ker Lann, 35170 Bruz, France

2. Department of Chemistry, Faculty of Science, University of Maroua, Maroua 814, Cameroon

3. Laboratory of Industrial Process Engineering Sciences, University of Sciences and Technology Houari Boumediene, Algiers 16111, Algeria

4. Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France

Abstract

In this study, TiO2 nanospheres (TiO2-NS) were synthesized by the solvothermal method. Firstly, the synthesized nanomaterial was characterized by X-ray diffraction (XRD), Fourier Transformed Infrared (FTIR), scanning electron microscopy (SEM) and UV-Vis Diffuse Reflectance Spectroscopy (DRS). To study the photocatalytic degradation of Tartrazine (TTZ) and Naphthol Blue Black (NBB) in a binary mixture, the influence of some key parameters such as pH, pollutant concentration and catalyst dose was taken into account under visible and UV light. The results show a 100% degradation efficiency for TTZ after 150 min of UV irradiation and 57% under visible irradiation at 180 min. The kinetic study showed a good pseudo-first-order fit to the Langmuir–Hinshelwood model. Furthermore, in order to get closer to the real conditions of textile wastewater, the influence of the presence of salt on TiO2-NS’s photocatalytic performance was explored by employing NaCl as an inorganic ion. The optimum conditions provided by the Response Surface Methodology (RSM) were low concentrations of TTZ (2 ppm) and NBB (2.33 ppm) and negligible salt (NaCl) interference. The percentage of photodegradation was high at low pollutant and NaCl concentrations. However, this yield became very low as NaCl concentrations increased. The photocatalytic treatment leads to 31% and 53% of mineralization yield after 1 and 3 h of visible light irradiation. The synthesis of TiO2-NS provides new insights that will help to develop an efficient photocatalysts for the remediation of contaminated water.

Funder

Erasmus+ International Credit Mobility

International Research Center “Innovation Transportation and Production Systems” of the I-SITE CAP 20-25

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3