Facile Synthesis Method of Zeolite NaY and Zeolite NaY-Supported Ni Catalyst with High Catalytic Activity for the Conversion of CO2 to CH4

Author:

Krachuamram Somkiat1,Kidkhunthod Pinit2,Poo-arporn Yingyot2,Chanapattharapol Kingkaew Chayakul1ORCID

Affiliation:

1. Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

2. Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand

Abstract

In this work, the facile reflux method was used as a crystallization procedure for zeolite NaY synthesis. The zeolite mixture was aged for 7 days and then refluxed for crystallization at 100 °C for 12 h. The synthesized zeolite NaY was impregnated with 10, 20 and 30 wt%Ni solution to use as a catalyst for CO2 methanation. The 30 wt% of Ni on the zeolite NaY catalyst showed the highest CO2 methanation catalytic activity, with almost 100% CH4 selectivity. This can be explained by an appropriate H2 and CO2 adsorption amount on a catalyst surface being able to facilitate the surface reaction between them and further react to form products. The oxidation state of Ni and the stability of the catalyst were monitored by time-resolved X-ray absorption spectroscopy. The oxidation state of Ni2+ was reduced during the catalyst reduction prior to the CO2 methanation and it was completely reduced to Ni° at 600 °C. During CO2 methanation, Ni° remained unchanged. In addition, the stability test of the catalyst was conducted by exposing the catalyst to a fluctuating condition (CO2 + H2 and only CO2). The oxidation state of Ni° remained unchanged under the fluctuating condition. This indicated that the Ni/zeolite catalyst has high stability, which can be attributed to an appropriate binding strength between Ni and the zeolite support.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3