Preconcentration of Pb with Aminosilanized Fe3O4 Nanopowders in Environmental Water Followed by Electrothermal Atomic Absorption Spectrometric Determination

Author:

Kusutaki Tomoharu,Furukawa Mai,Tateishi Ikki,Katsumata Hideyuki,Kaneco SatoshiORCID

Abstract

A new preconcentration method to determine lead in environmental waters using the aminosilanized magnetite Fe3O4 powder sorbent has been developed. The preconcentration method was combined with electrothermal atomization atomic absorption spectrometry (ETAAS) and a graphite atomizer. Trace amount of sorbent (3 mg) could be applied into the preconcentration of Pb. According the preconcentration, the detection limits were 14 and 19 pg·mL−1 with bare and aminosilanized Fe3O4, respectively. The effect of interferent elements such as Al, Ca, Co, Fe, K, Mg, Na, Ni, and Zn (1000 ng·mL−1 versus Pb 1 ng·mL−1) on the preconcentration of Pb using bare magnetite was evaluated, and some elements (Al, Ni, and Zn) were found to interfere with the Pb preconcentration. The aminosilanized Fe3O4 sorbent was found to be effective in eliminating the severe interferences. The enrichment factors were 34 for the preconcentration with aminosilanized Fe3O4. The recovery of spiked Pb in the case of the sorbent with aminosilanized Fe3O4 was in the range of 75 to 110%. From the analytical data, the preconcentration technique was found to be useful for the determination of trace lead in environmental waters.

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3