Development of Sunlight Driven Water Splitting Devices towards Future Artificial Photosynthetic Industry

Author:

Yamada Taro,Domen Kazunari

Abstract

The ongoing research and development of sunlight-driven water splitting in the “Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem)” is overviewed. Water splitting photocatalysts, photoelectrochemical devices, large-scale reactor panels, product gas transportation, H2/O2 gas separation devices and safety measures against explosion are included as the research objectives. ARPChem was formed as a research union of Japan’s leading chemical firms, in which related elementary technologies have been cultivated. This article introduces our general scope for artificial photosynthesis and describes present research activities, mainly on solar driven water splitting photocatalysts/photoelectrodes and briefly on the processes and plans for plant construction for future industrial extension.

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

Reference39 articles.

1. Development of Basic Chemical Processes for Carbon Dioxide as Raw Materialwww.nedo.go.jp/activities/EV_00296.html

2. A SrTiO3 photoanode prepared by the particle transfer method for oxygen evolution from water with high quantum efficiencies

3. Synthesis of BiOI-TiO2 composite nanoparticles by microemulsion method and study on their photocatalytic activities;Chen;Sci. World J.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3