Effects of Pore Connectivity on the Sorption of Fluids in Nanoporous Material: Ethane and CO2 Sorption in Silicalite

Author:

Gautam SiddharthORCID,Cole David R.

Abstract

Adsorption of fluids in nanoporous materials is important for several applications including gas storage and catalysis. The pore network in natural, as well as engineered, materials can exhibit different degrees of connectivity between pores. While this might have important implications for the sorption of fluids, the effects of pore connectivity are seldom addressed in the studies of fluid sorption. We have carried out Monte Carlo simulations of the sorption of ethane and CO2 in silicalite, a nanoporous material characterized by sub-nanometer pores of different geometries (straight and zigzag channel like pores), with varied degrees of pore connectivity. The variation in pore connectivity is achieved by selectively blocking some pores by loading them with methane molecules that are treated as a part of the rigid nanoporous matrix in the simulations. Normalized to the pore space available for adsorption, the magnitude of sorption increases with a decrease in pore connectivity. The increased adsorption in the systems where pore connections are removed by blocking them is because of additional, albeit weaker, adsorption sites provided by the blocker molecules. By selectively blocking all straight or zigzag channels, we find differences in the absorption behavior of guest molecules in these channels.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3