Coagulated Mineral Adsorbents for Dye Removal, and Their Process Intensification Using an Agitated Tubular Reactor (ATR)

Author:

Tonge Alastair S.,Harbottle DavidORCID,Casarin Simon,Zervaki Monika,Careme Christel,Hunter Timothy N.ORCID

Abstract

The aim of this study was to understand the efficacy of widely available minerals as dual-function adsorbers and weighter materials, for the removal of toxic azo-type textile dyes when combined with coprecipitation processes. Specifically, the adsorption of an anionic direct dye was measured on various mineral types with and without the secondary coagulation of iron hydroxide (‘FeOOH’) in both a bench-scale stirred tank, as well as an innovative agitated tubular reactor (ATR). Talc, calcite and modified bentonite were all able to remove 90–95% of the dye at 100 and 200 ppm concentrations, where the kinetics were fitted to a pseudo second-order rate model and adsorption was rapid (<30 min). Physical characterisation of the composite mineral-FeOOH sludges was also completed through particle size and sedimentation measurements, as well as elemental scanning electron microscopy to determine the homogeneity of the minerals in the coagulated structure. Removal of >99% of the dye was achieved for all the coagulated systems, where additionally, they produced significantly enhanced settling rates and bed compression. The greatest settling rate (9 mm min−1) and solids content increase (450% w/w) were observed for the calcium carbonate system, which also displayed the most homogenous distribution. This system was selected for scale-up and benchmarking in the ATR. Dye removal and sediment dispersion in the ATR were enhanced with respect to the bench scale tests, although lower settling rates were observed due to the relatively high shear rate of the agitator. Overall, results highlight the applicability of these cost-effective minerals as both dye adsorbers and sludge separation modifiers to accelerate settling and compression in textile water treatment. Additionally, the work indicates the suitability of the ATR as a flexible, modular alternative to traditional stirred tank reactors.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3