MoS2-Cysteine Nanofiltration Membrane for Lead Removal

Author:

Jang JaewonORCID,Chee Sang-SooORCID,Kang YesolORCID,Kim Suhun

Abstract

To overcome the limitations of polymers, such as the trade-off relationship between water permeance and solute rejection, as well as the difficulty of functionalization, research on nanomaterials is being actively conducted. One of the representative nanomaterials is graphene, which has a two-dimensional shape and chemical tunability. Graphene is usually used in the form of graphene oxide in the water treatment field because it has advantages such as high water permeance and functionality on its surface. However, there is a problem in that it lacks physical stability under water-contacted conditions due to the high hydrophilicity. To overcome this problem, MoS2, which has a similar shape to graphene and hydrophobicity, can be a new option. In this study, bulk MoS2 was dispersed in a mixed solvent of acetone/isopropyl alcohol, and MoS2 nanosheet was obtained by applying sonic energy to exfoliate. In addition, Cysteine was functionalized in MoS2 with a mild reaction. When the nanofiltration (NF) performance of the membrane was compared under various conditions, the composite membrane incorporated by Cysteine 10 wt % (vs. MoS2) showed the best NF performances.

Funder

Gwangju Institute of Science and Technology

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3