Abstract
This work serves as a roadmap for the development of a Vanadium dioxide (VO2)–Iridium composite based on the self-assembly of closely packed colloidal polystyrene microspheres (P-spheres) coupled with a Pulsed Laser Deposition (PLD) process. The self-assembly of a monolayer of PS is performed on an Al2O3-c substrate, using an adapted Langmuir–Blodgett (LB) process. Then, on the substrate covered with P-spheres, a 50-nanometer Iridium layer is deposited by PLD. The Iridium deposition is followed by the removal of PS with acetone, revealing an array of triangular shaped metallic elements formed on the underlaying substrate. In a last deposition step, 50-, 100- and 200-nanometer thin films of VO2 are deposited by PLD on top of the substrates covered with the Iridium quasi-triangles, forming a composite. Adapting the size of the P-spheres leads to control of both the size of the Iridium micro-triangle and, consequently, the optical transmittance of the composite. Owing to their shape and size the Iridium micro-triangles exhibit localized surface plasmon resonance (LSPR) characterized by a selective absorption of light. Due to the temperature dependent properties of VO2, the LSPR properties of the composite can be changeable and tunable.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献