Evaluating Impact Damage of Flat Composite Plate for Surrogate Bird-Strike Testing of Aeroengine Fan Blade

Author:

Sun YouchaoORCID,Zhang Yuemei,Zhou YadongORCID,Zhang Haitao,Zeng Haijun,Yang Kun

Abstract

Bird-strike failure of fan blades is one of the basic challenges for the safety of aircraft engines. Simplified flat blade-like plates are always used for damage mechanism study of composite laminates. One undesirable issue is the failure at the root of clamped flat plates under high-velocity impact. For this purpose, two different strategies were exploited to obtain desirable impact damage distributions, namely the impact location and the boundary condition. Numerical models of the simplified flat blade-like plate and the bird projectile were constructed by using finite element method (FEM) and smoothed particle hydrodynamics (SPH) approaches. The impact damage distributions were comparatively investigated in detail. The numerical results show that changing the boundary condition is the most effective way to obtain preferable impact damages for further failure analysis of real fan blades. Present results will be useful to the future surrogate experimental design of simplified bird-strike testing.

Funder

Joint Fund of National Natural Science Foundation of China and Civil Aviation Administration of China

Publisher

MDPI AG

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3