Abstract
This work reports on the production and characterization of recycled high density polyethylene (R-HDPE) composites reinforced with maple fibers. The composites were produced by a simple dry-blending technique followed by compression molding. Furthermore, a fiber surface treatment was performed using a coupling agent (maleated polyethylene, MAPE) in solution. FTIR, TGA/DTG, and density analyses were performed to confirm any changes in the functional groups on the fiber surface, which was confirmed by SEM-EDS. As expected, the composites based on treated fiber (TC) showed improved properties compared to composites based on untreated fiber (UC). In particular, MAPE was shown to substantially improve the polymer–fiber interface quality, thus leading to better mechanical properties in terms of tensile modulus (23%), flexural modulus (54%), tensile strength (26%), and flexural strength (46%) as compared to the neat matrix. The impact resistance also increased by up to 87% for TC as compared to UC. In addition, the maximum fiber content to produce good parts increased from 15 to 75 wt% when treated fiber was used. These composites can be seen as sustainable materials and possible alternatives for the development of low-cost building/construction/furniture applications.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献