Abstract
Composite ionic conductors for intermediate temperature fuel cells (ITFC) were produced by a combination of yttrium-substituted barium zirconate (BaZr0.9Y0.1 O2.95, BZY) and eutectic compositions of alkali carbonates (Li2CO3, Na2CO3, and K2CO3, abbreviated L, N, K). These materials were characterized by X-ray diffraction, scanning electron microscopy, and impedance spectroscopy. The combination of BZY with alkali metal carbonate promotes the densification and enhances the ionic conductivity, which reaches 87 mS·cm−1 at 400 °C for the BZY–LNK40 composite. In addition, the increase of the conductivity as a function of hydrogen partial pressure suggests that protons are the main charge carriers. The results are interpreted in terms of the transfer of protons from the ceramic component to the carbonate phase in the interfacial region.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献