High Reduction Efficiencies of Adsorbed NOx in Pilot-Scale Aftertreatment Using Nonthermal Plasma in Marine Diesel-Engine Exhaust Gas

Author:

Kuwahara ,Yoshida ,Kuroki ,Hanamoto ,Sato ,Okubo

Abstract

An efficient NOx reduction aftertreatment technology for a marine diesel engine that combines nonthermal plasma (NTP) and NOx adsorption/desorption is investigated. The aftertreatment technology can also treat particulate matter using a diesel particulate filter and regenerate it via NTP-induced ozone. In this study, the NOx reduction energy efficiency is investigated. The investigated marine diesel engine generates 1 MW of output power at 100% engine load. NOx reduction is performed by repeating adsorption/desorption processes with NOx adsorbents and NOx reduction using NTP. Considering practical use, experiments are performed for a larger number of cycles compared with our previous study; the amount of adsorbent used is 80 kg. The relationship between the mass of desorbed NOx and the energy efficiency of NOx reduction via NTP is established. This aftertreatment has a high reduction efficiency of 71% via NTP and a high energy efficiency of 115 g(NO2)/kWh for a discharge power of 12.0 kW.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3