Microfluidic Cell Trapping for Single-Cell Analysis

Author:

Deng Bing,Wang Heyi,Tan Zhaoyi,Quan Yi

Abstract

The single-cell capture microfluidic chip has many advantages, including low cost, high throughput, easy manufacturing, integration, non-toxicity and good stability. Because of these characteristics, the cell capture microfluidic chip is increasingly becoming an important carrier on the study of life science and pharmaceutical analysis. Important promises of single-cell analysis are the paring, fusion, disruption and analysis of intracellular components for capturing a single cell. The capture, which is based on the fluid dynamics method in the field of micro fluidic chips is an important way to achieve and realize the operations mentioned above. The aim of this study was to compare the ability of three fluid dynamics-based microfluidic chip structures to capture cells. The effects of cell growth and distribution after being captured by different structural chips and the subsequent observation and analysis of single cells on the chip were compared. It can be seen from the experimental results that the microfluidic chip structure most suitable for single-cell capture is a U-shaped structure. It enables single-cell capture as well as long-term continuous culture and the single-cell observation of captured cells. Compared to the U-shaped structure, the cells captured by the microcavity structure easily overlapped during the culture process and affected the subsequent analysis of single cells. The flow shortcut structure can also be used to capture and observe single cells, however, the shearing force of the fluid caused by the chip structure is likely to cause deformation of the cultured cells. By comparing the cell capture efficiency of the three chips, the reagent loss during the culture process and the cell growth state of the captured cells, we are provided with a theoretical support for the design of a single-cell capture microfluidic chip and a reference for the study of single-cell capture in the future.

Funder

China Academy of Engineering Physics Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3