Assessing the Impact of Physical and Anthropogenic Environmental Factors in Determining the Habitat Suitability of Seagrass Ecosystems

Author:

Hastings Ryan,Cummins ValerieORCID,Holloway PaulORCID

Abstract

Blue Carbon ecosystems such as mangroves, saltmarshes and seagrasses have been shown to sequester large amounts of carbon, and subsequently are receiving renewed interest from policy experts in light of climate change. Globally, seagrasses remain the most understudied of these ecosystems, with their total geographic extent largely unknown due to challenges in mapping dynamic coastal environments. As such, species distribution models (SDMs) have been used to identify areas of high suitability, in order to inform our understanding of where unmapped meadows may be located or to identify suitable sites for restoration and/or enhancement efforts. However, many SDMs parameterized to project seagrass distributions focus on physical and not anthropogenic variables (i.e., dredging, aquaculture), which can have negative impacts on seagrass meadows. Here we used verified datasets to identify the potential distribution of Zostera marina and Zostera noltei at a national level for the Republic of Ireland, using 19 environmental variables including both physical and anthropogenic. Using the Maximum Entropy method for developing the SDM, we estimated approximately 95 km2 of suitable habitat for Z. marina and 70 km2 for Z. noltei nationally with high accuracy metrics, including Area Under the Curve (AUC) values of 0.939 and 0.931, respectively for the two species. We found that bathymetry, maximum sea-surface temperature (SST) and minimum salinity were the most important environmental variables that explained the distribution of Z. marina and that high standard deviation of SST, mean SST and maximum salinity were the most important variables in explaining the distribution of Z. noltei. At a national level, we noted that it was primarily physical variables that determined the geographic distribution of seagrass, not anthropogenic variables. We unexpectedly modelled areas of high suitability in locations of anthropogenic disturbance (i.e., dredging, high pollution risk), although this may be due to the binary nature of SDMs capturing presence-absence and not the size and condition of the meadows, suggesting a need for future research to explore the finer scale impacts of anthropogenic activity. Subsequently, this research should foster discussion for researchers and practitioners working on sustainability projects related to Blue Carbon.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3